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Introduction
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Transformers [1]

1 Extensive applications.

2 Salient achievements.

3 Parallel training (precludes the

sequence-aligned recurrence as in

LSTMs).
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Transformer Architecture [1]

Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the

3

Sublayers

1 Multi-head dot product
attention.

2 Position-wise feed-forward
layer.

Location-Unaware

Absolute sinusoidal
Positional Encoding.
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Questions & Motivation

Q1: Are vanilla Transformers sufficient for seq-to-seq learning?

1 Previous works [2, 3, 4] leverage gating mechanisms (GLU) and Convolutional
Neural Networks (CNN) to learn sequences.

2 CNNs are adept in learning local-region features whereas Transformers are good at
modeling global dependencies.

Q2: Do we need identical Transformer stacks in different depth?

Previous work [5] claimed that self-attention models tend to capture local features
in the bottom layers.
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Highway Transformer Architecture

Three streams:

Self-dependency (SDU);

Inter-dependency (SAN / FFN);

Identity (residual connection).
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Self-Dependency Units (SDU)

X

Linear

point-wise 
product

Z

T (X) = Ψ(XW1 + b1) (1)

SDU(X) = T (X)� (XW2 + b2) (2)

where T (X) indicates the transform gate, Ψ is
the gate function to confine the linear projection
into a fixed range, which takes the
sigmoidal-curve functions such as σ and tanh.

tanh is treated as an update gate to restrict
the importance range into [-1,1].

σ can be regarded as the input gate to
modulate how much information to retain
at the feature-wise level.
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Pseudo-Highway Connection

Pseudo-Highway Connection

When taking σ as the non-linearity:

∇[f(X)� σ(g(X))] =

transform gate︷ ︸︸ ︷
σ(g(X)) �∇f(X)

+

carry gate︷ ︸︸ ︷(
1− σ(g(X))

) (
σ(g(X))� f(X)

) (3)

where the σ(.) can be seen as the transform gate, while (1− σ(.)) can be
seen as the carry gate. This could be regarded as a form of highway
networks.
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Gating Variants

X

Linear

point-wise 
product

Z

Identity

X
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fusion
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T1-T

SA

X

Linear

fusion

Z

T1-T

Self-Dependency Units (SDU) Highway Gate Gated Multi-Head Self-Attention

1 SDU ↪→ Self-dependency on itself by applying transform gate T .

2 Highway gate ↪→ Additional carry gate (1− T ) on identity.

3 Gated Multi-Head Self-Attention ↪→ Additional carry gate (1− T ) on SA.
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Experiments

Transformers

1 Vanilla Transformer

2 R-Transformer [7]

3 Transformer-XL [6]

Language Modeling Datasets

1 Char-level PTB

2 Word-level PTB

3 enwik8

Yekun Chai1, Shuo Jin2 Highway Transformer (ACL 2020) June 14, 2020 10 / 19



Results

3-layer Transformer (T-L3) on char-level PTB
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model eval loss eval ppl test loss test ppl

T-L3 1.068 1.541 1.036 1.495
+σ SDU 0.9776 1.410⇓ 0.950 1.371⇓
+tanh SDU 0.9714 1.401⇓ 0.945 1.364⇓
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Results

6-layer Transformer-XL (XL-L6) on enwik8

SDUs accelerate the convergence speed during training and evaluation process!
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Results

Ablation Study: XL-L6 on enwik8

model eval loss eval bpc test loss test bpc

L6-XL 0.8843 1.276 0.86 1.24339

+tanh SDU 0.8602 1.241⇓ 0.84 1.21424⇓
+σ SDU 0.8577 1.237⇓ 0.84 1.21123⇓
+highway gate 0.8692 1.254⇓ 0.85 1.22177⇓
+gated MHDPA 0.8682 1.253⇓ 0.85 1.22398⇓

Ablation study

+tanh L1-6\FFN 0.8720 1.258⇓ 0.85 1.22866⇓
+tanh L1-3 0.8660 1.249⇓ 0.85 1.22039⇓
+tanh L3-6 0.8852 1.277⇓ 0.86 1.24420⇓

+σ L1-6\FFN 0.8752 1.263⇓ 0.85 1.23332⇓
+σ L1-3 0.8792 1.268⇓ 0.86 1.23589⇓
+σ L3-6 0.8843 1.276⇓ 0.86 1.24261⇓
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Results

12-layer Transformer-XL (XL-L12) on enwik8.

Our experiments showed that SDU on shallow layers could
accelerate the convergence process.
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Results

Visualization of learned baises on SDUs
Shallow layers of Transformers may attend to different semantics from top layers.

b : bias on FFN sublayera : bias on SA sublayer
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Conclusions

Self-Gating Units (SDU) allows for the pseudo-highway information
flow, leading to the better convergence during training/evaluation
process.

It is compatible and scalable to common Transformer variants,
including Transformer-XL and R-Transformer.

Low layers in the Transformer stacks may pay more attention to local
features [5], and the SDU components can be applied on the bottom
layers for deep Transformer models.
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