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Introduction
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Transformers [1]

© Extensive applications.
@ Salient achievements.

© Parallel training (precludes the
sequence-aligned recurrence as in
LSTMs).
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Transformer Architecture [1]
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Questions & Motivation

. Are vanilla Transformers sufficient for seq-to-seq learning?

Previous works [2, 3, 4] leverage gating mechanisms (GLU) and Convolutional
Neural Networks (CNN) to learn sequences.

@ CNNs are adept in learning local-region features whereas Transformers are good at
modeling global dependencies.

: Do we need identical Transformer stacks in different depth?

@ Previous work [5] claimed that self-attention models tend to capture local features
in the bottom layers.
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Highway Transformer Architecture

Three streams:
@ Self-dependency (SDU);
@ Inter-dependency (SAN / FFN);

@ Identity (residual connection).
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Self-Dependency Units (SDU)

T(X) = W(XW; + by) (1)
SDU(X) = T(X) ® (XW3 + b)) (2)

: where T(X) indicates the transform gate, W is

H ~ the gate function to confine the linear projection

into a fixed range, which takes the

Clres> sigmoidal-curve functions such as ¢ and tanh.

@ tanh is treated as an update gate to restrict

T—x ,,,,,,,,,,,,,,,, the importance range into [-1,1].

@ o can be regarded as the input gate to
modulate how much information to retain
at the feature-wise level.
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Pseudo-Highway Connection

Pseudo-Highway Connection

When taking o as the non-linearity:

transform gate

—
VIF(X) @ o(g(X))] = (g(X)) OVF(X) 3)

—_—
+(1 - o(g(X))) (o(g(X) © f(X))

where the o(.) can be seen as the transform gate, while (1 — o(.)) can be
seen as the carry gate. This could be regarded as a form of highway
networks.
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Gating Variants

inear i

Self-Dependency Units (SDU) Highway Gate Gated Multi-Head Self-Attention

@ SDU < Self-dependency on itself by applying transform gate T.
@ Highway gate < Additional carry gate (1 — T) on identity.
© Gated Multi-Head Self-Attention < Additional carry gate (1 — T) on SA.
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Transformers Language Modeling Datasets
@ Vanilla Transformer @ Char-level PTB
@ R-Transformer [7] @ Word-level PTB
© Transformer-XL [6] © enwik8
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Training and validation loss

Training and validation bpc
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Results

6-layer Transformer-XL (XL-L6) on enwik8

SDUs accelerate the convergence speed during training and evaluation process!
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Results

Ablation Study: XL-L6 on enwik8

model eval loss eval bpc test loss test bpc

L6-XL 0.8843 1.276 0.86 1.24339

+tanh SDU 0.8602 1.241)) 0.84 1.21424|
+0 SDU 0.8577 1.237) 0.84 1.21123)
+highway gate 0.8692 1.254]) 0.85 1.22177)
+gated MHDPA  0.8682 1.253]) 0.85 1.22398|

Ablation study

+tanh L1-6\FFN 0.8720 1.258) 0.85 1.22866{
+tanh L1-3 0.8660 1.249 0.85 1.22039)
+tanh L3-6 0.8852 1.277]) 0.86 1.244204
+o L1-6\FFN 0.8752 1.263]) 0.85 1.23332
+o L1-3 0.8792 1.268]) 0.86 1.23589|
+o L3-6 0.8843 1.2764 0.86 1.24261
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Results

12-layer Transformer-XL (XL-L12) on enwik8.
@ Our experiments showed that SDU on shallow layers could
accelerate the convergence process.
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Visualization of learned baises on SDU

Shallow layers of Transformers may attend to different semantics from top layers.

SDELI' gate bias on both MHDPA and FFN of 12-layer models SDU gate bias on both MHDPA and FFN of 6-layer models
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Conclusions

@ Self-Gating Units (SDU) allows for the pseudo-highway information
flow, leading to the better convergence during training/evaluation
process.

@ It is compatible and scalable to common Transformer variants,
including Transformer-XL and R-Transformer.

@ Low layers in the Transformer stacks may pay more attention to local
features [5], and the SDU components can be applied on the bottom
layers for deep Transformer models.
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