Predicate-Argument Based Bi-Encoder for Paraphrase Identification 115

5

Qiwei Peng¹, David Weir¹, Julie Weeds¹, Yekun Chai²

University of Sussex

¹University of Sussex, ²Baidu, Inc

Paraphrase Identification

"Marriage equality law passed in Rhode Island"

"Rhode Island becomes the 10th state to enact marriage equality"

Paraphrase Identification:

- Generally considered as a symmetric task where the relation holds in both directions (Bhagat and Hovy, 2013)
- Paraphrase pairs are either fully or largely semantically equivalent
- Effective paraphrase models are expected to be structure-aware and word order sensitive

Compared to Simple Average TwitterURL PAWS_Wiki PAWS_QQP PIT2015 QQP MSRP PAS+SBERT 72.12±0.26 83.42±0.23 82.60±0.18 68.85±0.73 59.19±1.85 90.74±0.06 70.85±0.28 81.67±0.46 81.57±0.53 66.01±0.45 52.03±1.44 - SBERT-only 90.78±0.09 90.70±0.08 71.64±0.14 82.91±0.12 82.26±0.34 67.38±0.22 54.95±1.45 - PAS only - PAS only

Analysis

82.13±0.14

81.85±0.26

The PAS component plays an important role in performance gain

71.09±0.30

The learnable weights for aggregation is effective

90.11±0.13

Compared to Random Span

(simple average)

We report the F1 score of the positive class over 5 random runs with standard error

66.55±0.41

 51.82 ± 1.31

Background:

2

1

Motivation

- Various efforts have been put into introducing structural information to pre-trained models (Zhang et al., 2020, Yin et al., 2020, Wu et al., 2021, Peng et al., 2021), however, many of them introduce **a huge number of** additional parameters
- Cross-encoders face challenges from both extreme computation overhead for many use cases (Thakur et al., 2021) and inconsistent predictions when dealing with symmetric tasks (Chen et al., 2020)

The Question: How can we introduce structural information into pre-trained bi-encoders in a simple but effective way? Frames for beat :

Inspired by Sun et al. (2020), we propose a method that effectively introduces sentence structures into bi-encoders via the weighted aggregation of predicate-argument spans with limited additional parameters

Task	Span Type	Span only	Self-Explain*	SBERT	
	PAS	82.91±0.12			
MSRP	Continuous	<u>81 40+0 43</u>	81.23±0.27	81.67±0.46	
	Random Span	81.40±0.43			
	Random Span	81.86±0.47			
PAWS_QQP	PAS	67.38±0.22			
	Continuous	65 15+0 11	66.88±0.46	66.01±0.45	
	Random Span	03.43 ± 0.44			
	Random Span	65.75±0.74			
	PAS	54.95±1.45			
PIT2015	Continuous	51 62+1 02	47.60±1.01	52.03±1.44	
	Random Span	51.02 ± 1.92			
	Random Span	50.85±2.11			

Continuous Random Span -> We randomly sample continuous word sequences from the sentence to build a span

Random Span -> We do not necessarily sample continuous words, but allow word leaps from one to another

It is the **predicate-argument span** that makes the big difference!

Compared to Different Training Size

- Span representations are obtained via mean-pooling over all tokens in the span. Learnable weights are applied to the aggregation of predicate-argument spans
- We concatenate the span-based sentence embedding with the original last-avg BERT sentence representation
- The interaction between two sentences is changed from (u, v, |u-v|) to (|u-v|, u * v) to \bullet ensure symmetry (compared to the original strategy in SBERT)

Predicate-Argument spans are obtained via AllenNLP with its semantic role labelling tagger

4 Main Evaluation											
	QQP	TwitterURL	MSRP	PAWS	_Wiki	PAW	S_QQP	PIT2015			
SBERT	90.78±0.09	70.85±0.28	81.67±0.46	81.57±0.53		66.0	01±0.45	52.03±1.44			
SBERT-RGCN	90.41±0.09	70.40±0.22	81.70±0.17	81.14±0.81		66.2	2±0.75	59.11±0.93			
PAS+SBERT	90.74±0.06	72.12±0.26	83.42±0.23	82.60±0.18		68.8	85±0.73	59.19±1.85			
SRoBERTa	90.79±0.09	70.69±0.23	81.69±0.53	81.42±0.93		67.3	5±0.97	52.67±2.75			
PAS+SRoBERTa	90.76±0.03	72.04±0.23	83.22±0.46	82.87±0.35		69.6	68±0.72	59.50±2.74			
The proposed model is effective on 5 out of 6 PI tasks and also show competitive performance on QQP											
The parameters introduced by PAS is very limited						SBERT-base109MPAS only+768PAS+SBERT+3840SBERT-RGCN+ 32M					

In spite of limited increased parameters, the proposed model appears to yield **consistent improvements** across different training scales

Conclusion

- We propose a method which effectively introduces sentence structure to a sentence embedding via the aggregation of predicate-argument spans (PAS)
- Our model brings improvements on six paraphrase identification tasks
- Upon closer investigation, we show that the PAS component and its learnable weights play a substantial impact in the performance gain
- This PAS component, as demonstrated with SRoBERTa, can be easily extended to other models that require the generation of sentence embeddings
- Compared to RGCN, the PAS component brings in very limited parameters

References and Acknowledgements

[1] Rahul Bhagat and Eduard Hovy. 2013. What is a paraphrase? Computational Linguistics, 39(3):463–472.

[2] Zhuosheng Zhang, Yuwei Wu, Hai Zhao, Zuchao Li, Shuailiang Zhang, Xi Zhou. 2020. Semantics-aware bert for language understanding. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 9628–9635.

6

[3] Da Yin, Tao Meng, and Kai-Wei Chang. 2020. Sen-tibert: A transferable transformer-based architecture for compositional sentiment semantics. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3695–3706.

[4] Zhaofeng Wu, Hao Peng, and Noah A Smith. 2021. Infusing finetuning with semantic dependencies. Transactions of the Association for Computational Linguistics, 9:226–242.

[5] Qiwei Peng, David Weir, and Julie Weeds. 2021. Structure-aware sentence encoder in bert-based Siamese network. In Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 57–63, Online. Association for Computational Linguistics.

[6] Zijun Sun, Chun Fan, Qinghong Han, Xiaofei Sun, Yuxian Meng, Fei Wu, and Jiwei Li. 2020. Self- explaining structures improve nlp models. arXiv preprint arXiv:2012.01786.