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Abstract

Generative Adversarial Networks (GANs) have achieved great success in
image synthesis, but have proven to be difficult to generate natural lan-
guage. Challenges arise from the uninformative learning signals passed
from the discriminator. In other words, the poor learning signals limit the
learning capacity for generating languages with rich structures and seman-
tics. In this paper, we propose to adopt the counter-contrastive learning
(CCL) method to support the generator’s training in language GANs. In con-
trast to standard GANs that adopt a simple binary classifier to discriminate
whether a sample is real or fake, we employ a counter-contrastive learn-
ing signal that advances the training of language synthesizers by (1) pulling
the language representations of generated and real samples together and
(2) pushing apart representations of real samples to compete with the dis-
criminator and thus prevent the discriminator from being overtrained. We
evaluate our method on both synthetic and real benchmarks and yield com-
petitive performance compared to previous language GANs.

Introduction

• Generative Adversarial Networks (GANs) hold the promise of training
language models, as an alternative method to MLE. GANs learn to
sample during training so as to avoid the exposure bias issue, whose
aim is to train a language generator to fool the discriminator that distin-
guishes the fake data out of real samples.

• Previous innovations adopt various approaches to enhance the learn-
ing signals for generators, such as leaking information from the discrim-
inator to the generator [3], directly matching the fake data distribution to
that of real data [6, 1], learning to rank samples out of a collection of cu-
rated samples [4, 7], leveraging more powerful generator architectures
to learning representations [5], etc. However, the problem of language
GANs’ training is far from being fully solved.

• Inspired by the recent success in contrastive learning approaches [2]
in learning effective representations, we propose a counter-contrastive
learning objective to aid the adversarial learning of sequence genera-
tors in language GANs. Conventional contrastive learning methods aim
at pulling positive samples together and pushing away positive samples
from negative ones.

Intuition: Counter-Contrastive Learning

B Contrastive Learning

• Help D to discriminate positive samples from negative ones.

LCL
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• However, the generator G in language GANs aims to cheat the dis-
criminator D.

B Counter-Contrastive Learning

• Draw together the fake and real samples (xi, x
−
i ) (to let the generator

imitate the real sentences);

• Push away the real samples (xi, x
+
i ) (to fool and hinder the discrimina-

tor training, thereby preventing it from fast convergence).

Methodology

• Positive Samples. We construct positive pairs by applying disparate
dropout masks to get positive representations for input real texts sampled
from pdata. Specifically, for the same real sentence, we get positive pair rep-
resentations after feed them into the discriminator twice with two different
random dropout operations. Denote hmi = f (xi,m), where m is the dropout
mask and f is the encoder of input sentences.

• Negative Samples. We randomly select fake sentences generated by the
generator network and feed them into the discriminator to get fake sample
representations. Therefore, we choose one from positive representations
and the other from the negative to construct negative pairs (hi,h

−
i ).

• Counter-Contrastive Learning. Given the mini-batch of size N , we formu-
late the counter-contrastive learning objectives as:

Li = − log
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−
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−
j )/τ + e
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+
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)
where τ is the constant temperature.

Intuitively, this CCL objective aims to (1) force the fake representations to
approach real data (the numerator), and (2) prevent the discriminator from
learning effective representations of positive pairs by pushing away seman-
tically close pairs (the right term in the denominator).

Results

Synthetic Data We evaluate the generated sequence w.r.t. both quality and di-
versity.It is observed that our model outperforms baseline models in terms of
quality (measured by NLLoracle) and quality-diversity trade-off (measured by
NLLoracle+NLLgen), and achieves or matches the competitive results of base-
lines w.r.t. the diversity (indicated by NLLgen).

Optimization We apply Adam optimizer with
β1 = 0.9 and β2 = 0.999. For the initial learning
rate, we set to 1e-2 and 1e-4 for pretraining and
adversarial training respectively for the generator,
and to 1e-4 for the discriminator during adversarial
training. All trainable parameters whose L2 norm
values of gradients exceed 5 are truncated.

Training Settings The following hyperparame-
ters are finetuned: batch size of {32, 64, 128}, the
CCL temperature τ ∈ {0.2, 0.5, 1}. The training
step for the generator and discriminator is set to
g = 1 and d = 5, respectively. We pretrain the
generator for 150 epochs before the adversarial
training. The optimal batch size is set to 128 for
both synthetic and real datasets. All experiments
are conducted on Nvidia Titan RTX GPU with 5
different random seeds.

5.2 Results on Synthetic Data

Model NLLoracle (20/40) NLLgen (20/40) NLLoracle + NLLgen (20/40)

MLE 9.05±0.03 / 9.84±0.02 5.96±0.02 / 6.55±0.02 15.02±0.03 / 16.39±0.01

SeqGAN 8.63±0.19 / 9.63±0.04 6.61±0.22 / 6.98±0.08 15.00±0.03 / 16.35±0.02

RankGAN 8.42±0.31 / 9.52±0.11 7.14±0.34 / 7.05±0.12 15.01±0.02 / 16.37±0.02

MaliGAN 8.74±0.16 / 9.67±0.03 6.62±0.25 / 7.14±0.09 15.03±0.03 / 16.39±0.03

SAL 7.71±0.17 / 9.31±0.03 6.58±0.15 / 6.97±0.05 14.29±0.11 / 16.24±0.03

Ours 6.77±0.34 / 6.65±0.14 6.91±0.62 / 7.68±0.79 13.69±0.36 / 14.33±0.76

Table 2: Performance of different models on the syn-
thetic dataset with the sequence length of 20 and 40,
respectively. For NLL scores, the lower, the better.

For synthetic data, we evaluate the generated
sequence w.r.t. both quality and diversity. We
use the oracle LSTM to evaluate the negative log-
likelihood of our generated samples (denoted as
NLLoracle) to measure the quality, and the negative
log-likelihood of the synthetic dataset (denoted as
NLLgen) measured by the generator during train-
ing. We also report the best NLLoracle+NLLgen
to evaluate the trade-off between quality and di-
versity. It is observed that our model outper-
forms baseline models in terms of quality (mea-
sured by NLLoracle) and quality-diversity trade-off
(measured by NLLoracle+NLLgen), and achieves or
matches the competitive results of baselines w.r.t.
the diversity (indicated by NLLgen).

5.3 Results on Real Data

Table 3 exhibits the final results of the BLEU and
NLLgen scores on different comparison models.
Notably, our model shows a significant improve-
ment over previous methods, consistently achieves
competitive results in terms of the sample quality

Model BLEU-2 BLEU-3 BLEU-4 BLEU-5 NLLgen

MLE 0.731 0.497 0.305 0.189 0.718
SeqGAN 0.745 0.498 0.294 0.180 1.082
RankGAN 0.743 0.467 0.264 0.156 1.344
LeakGAN 0.746 0.528 0.355 0.230 0.679
RelGAN 0.849±0.030 0.687±0.047 0.502±0.048 0.331±0.044 0.756±0.054

SAL 0.785±0.02 0.581±0.03 0.362±0.02 0.227±0.02 0.873±0.02

Ours (CCL) 0.871±0.032 0.715±0.050 0.538±0.068 0.399±0.082 0.630±0.103

Table 3: BLEU and NLLgen on MS COCO image cap-
tions. For BLEU scores, the higher, the better.

Model BLEU-2 BLEU-3 BLEU-4 BLEU-5 NLLgen

MLE 0.768 0.473 0.240 0.126 2.382
SeqGAN 0.777 0.491 0.261 0.138 2.773
RankGAN 0.727 0.435 0.209 0.101 3.345
LeakGAN 0.826 0.645 0.437 0.272 2.356
RelGAN 0.881±0.013 0.705±0.019 0.501±0.023 0.319±0.018 2.482±0.031

SAL 0.788±0.02 0.523±0.02 0.281±0.02 0.149±0.02 2.578±0.04

Ours 0.903±0.016 0.749±0.022 0.525±0.017 0.324±0.008 2.818±0.499

Table 4: BLEU and NLLgen on EMNLP2017 WMT
News dataset.

(indicated by BLEU scores) while maintaining the
diversity (indicated by NLLgen). Table 4 shows the
same trend on EMNLP2017 WMT News dataset.

5.4 Analysis

Ablation Test To further verify the benefits of
our method, we conduct an ablation test by remov-
ing the CCL update on MS COCO image captions.
It can be seen from Table 5 that ablating the CCL
component can quantitatively decrease the model
performance: the sentence quality decreased (with
the decrease of BLEU scores) and the diversity
drops (with the increase of NLLgen metric).

Model BLEU-2 BLEU-3 BLEU-4 BLEU-5 NLLgen

Ours 0.872 0.715 0.531 0.363 0.610
w/o CCL 0.813⇓ 0.630⇓ 0.445⇓ 0.312⇓ 0.683⇑

Table 5: Ablation test. The performance drops after
ablating the CCL method.

Comparison between Generated Samples For
fair comparison, we select the generated sentences
that contain the word “cat” from samples produced
by models with and without the CCL method (see
Table 6). It is observed that GANs with CCL tend
to produce sentences with better diversity. For ex-
ample, with the structure “a cat is sitting on top of
a car”, models w/ CCL can enrich it with different
modifier words. However, after removing CCL, the
model can duplicate words such as “sitting“ regard-
less of its repetitive usage. Moreover, as shown in
the last row of Table 6, with the CCL method, the

Real Data Our model shows a significant improvement over previous methods,
consistently achieves competitive results in terms of the sample quality (indi-
cated by BLEU scores) while maintaining the diversity (indicated by NLLgen).

Optimization We apply Adam optimizer with
β1 = 0.9 and β2 = 0.999. For the initial learning
rate, we set to 1e-2 and 1e-4 for pretraining and
adversarial training respectively for the generator,
and to 1e-4 for the discriminator during adversarial
training. All trainable parameters whose L2 norm
values of gradients exceed 5 are truncated.

Training Settings The following hyperparame-
ters are finetuned: batch size of {32, 64, 128}, the
CCL temperature τ ∈ {0.2, 0.5, 1}. The training
step for the generator and discriminator is set to
g = 1 and d = 5, respectively. We pretrain the
generator for 150 epochs before the adversarial
training. The optimal batch size is set to 128 for
both synthetic and real datasets. All experiments
are conducted on Nvidia Titan RTX GPU with 5
different random seeds.

5.2 Results on Synthetic Data

Model NLLoracle (20/40) NLLgen (20/40) NLLoracle + NLLgen (20/40)
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SAL 7.71±0.17 / 9.31±0.03 6.58±0.15 / 6.97±0.05 14.29±0.11 / 16.24±0.03

Ours 6.77±0.34 / 6.65±0.14 6.91±0.62 / 7.68±0.79 13.69±0.36 / 14.33±0.76

Table 2: Performance of different models on the syn-
thetic dataset with the sequence length of 20 and 40,
respectively. For NLL scores, the lower, the better.

For synthetic data, we evaluate the generated
sequence w.r.t. both quality and diversity. We
use the oracle LSTM to evaluate the negative log-
likelihood of our generated samples (denoted as
NLLoracle) to measure the quality, and the negative
log-likelihood of the synthetic dataset (denoted as
NLLgen) measured by the generator during train-
ing. We also report the best NLLoracle+NLLgen
to evaluate the trade-off between quality and di-
versity. It is observed that our model outper-
forms baseline models in terms of quality (mea-
sured by NLLoracle) and quality-diversity trade-off
(measured by NLLoracle+NLLgen), and achieves or
matches the competitive results of baselines w.r.t.
the diversity (indicated by NLLgen).

5.3 Results on Real Data

Table 3 exhibits the final results of the BLEU and
NLLgen scores on different comparison models.
Notably, our model shows a significant improve-
ment over previous methods, consistently achieves
competitive results in terms of the sample quality
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SeqGAN 0.745 0.498 0.294 0.180 1.082
RankGAN 0.743 0.467 0.264 0.156 1.344
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SAL 0.785±0.02 0.581±0.03 0.362±0.02 0.227±0.02 0.873±0.02

Ours (CCL) 0.871±0.032 0.715±0.050 0.538±0.068 0.399±0.082 0.630±0.103

Table 3: BLEU and NLLgen on MS COCO image cap-
tions. For BLEU scores, the higher, the better.
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SAL 0.788±0.02 0.523±0.02 0.281±0.02 0.149±0.02 2.578±0.04
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Table 4: BLEU and NLLgen on EMNLP2017 WMT
News dataset.

(indicated by BLEU scores) while maintaining the
diversity (indicated by NLLgen). Table 4 shows the
same trend on EMNLP2017 WMT News dataset.

5.4 Analysis

Ablation Test To further verify the benefits of
our method, we conduct an ablation test by remov-
ing the CCL update on MS COCO image captions.
It can be seen from Table 5 that ablating the CCL
component can quantitatively decrease the model
performance: the sentence quality decreased (with
the decrease of BLEU scores) and the diversity
drops (with the increase of NLLgen metric).

Model BLEU-2 BLEU-3 BLEU-4 BLEU-5 NLLgen

Ours 0.872 0.715 0.531 0.363 0.610
w/o CCL 0.813⇓ 0.630⇓ 0.445⇓ 0.312⇓ 0.683⇑

Table 5: Ablation test. The performance drops after
ablating the CCL method.

Comparison between Generated Samples For
fair comparison, we select the generated sentences
that contain the word “cat” from samples produced
by models with and without the CCL method (see
Table 6). It is observed that GANs with CCL tend
to produce sentences with better diversity. For ex-
ample, with the structure “a cat is sitting on top of
a car”, models w/ CCL can enrich it with different
modifier words. However, after removing CCL, the
model can duplicate words such as “sitting“ regard-
less of its repetitive usage. Moreover, as shown in
the last row of Table 6, with the CCL method, the

Fig. 2: Results on Real Data (MS COCO Image Caption).

Comparison with Language GANs without CCL
language GANs tend to write semantically mean-
ingful samples in comparison with the counterpart
without CCL.

model Sample sentences

w/o CCL

a cat is sitting on a white plate .
a cat is sitting on a bathroom sink sitting inside of a toilet .
a black and white cat outside decorated in rustic kitchen .
a cat is sitting on a bathroom sink sitting in a bathroom .
a cat is sitting on a bathroom sink sitting on a bathroom counter .
a cat sitting on a gravel ground inside of a bathroom sink .
a cat is sitting on a bathroom sink sitting in a bathroom .

w/ CCL

a cat is sitting on top of a car .
a cat is sitting on top of a car cleaning itself .
a cat is sitting on top of a car roof .
a cat is sitting on top of a car hood .
a cat is sitting on top of a man ’s head in front of a glass door .
a dog sitting on top of a parked car near a cat .
a cat in a white bathroom with a toilet paper beside a child .

Table 6: Comparison between generated sentences
from models with and without counter-contrastive
learning approach.

6 Related Work

A variety of language GANs integrated the RL
paradigm into GANs. SeqGAN (Yu et al., 2017)
firstly takes the text generation as a Markov
decision-making process and trains the language
generator with the policy gradient algorithm.
RankGAN (Lin et al., 2017) and SAL (Zhou et al.,
2020) enrich the restrictive signals by ranking con-
structed pairs. LeakGAN (Guo et al., 2017) leaks
the hidden states of the generator to promote the
generator training.

Another line of previous work either approxi-
mates the categorical sampling or optimizes on con-
tinuous representations, such as Gumbel-Softmax
GAN (Kusner and Hernández-Lobato, 2016),
TextGAN (Zhang et al., 2017), FMGAN (Chen
et al., 2018) and RelGAN (Nie et al., 2019).

Our work aims to integrate the prevalent con-
trastive learning approach in supporting the gen-
erator training, which lies in the line of methods
using comparative signals or ranking classifiers,
such as RankGAN and SAL. From the perspective
of feature matching, the counter-contrastive learn-
ing objective can be considered as a contrastive
signal to draw together the fake and real sample
representations.

7 Conclusion

In this paper, we introduce a counter-contrastive
learning objective to advance the training of lan-
guage GANs. It pulls the representation of gen-
erated and real samples together to promote the

generator training, and pushes apart real sample
pairs to depress the discriminator training as a com-
petitor. Our future work will include extending the
counter-contrastive learning method to other text
generation tasks such as machine translation and
dialogue generation.

Acknowledgements

The authors thank all anonymous reviewers for
their constructive comments. This work was sup-
ported by the National Natural Science Founda-
tion of China (Grant No.61876181), Beijing Nova
Program of Science and Technology under Grant
No.Z191100001119043, and in part by the Youth
Innovation Promotion Association, CAS.

References
Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and

Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In NIPS.

Tong Che, Yanran Li, R. Zhang, R. Devon Hjelm,
W. Li, Y. Song, and Yoshua Bengio. 2017.
Maximum-likelihood augmented discrete generative
adversarial networks. ArXiv, abs/1702.07983.

Liqun Chen, Shuyang Dai, Chenyang Tao, Dinghan
Shen, Zhe Gan, H. Zhang, Yizhe Zhang, and
L. Carin. 2018. Adversarial text generation via
feature-mover’s distance. In NeurIPS.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey E. Hinton. 2020. A simple frame-
work for contrastive learning of visual representa-
tions. ArXiv, abs/2002.05709.

Xinlei Chen, H. Fang, Tsung-Yi Lin, Ramakrishna
Vedantam, Saurabh Gupta, Piotr Dollár, and C. L.
Zitnick. 2015. Microsoft coco captions: Data collec-
tion and evaluation server. ArXiv, abs/1504.00325.

Jiaxian Guo, S. Lu, Han Cai, W. Zhang, Y. Yu, and
J. Wang. 2017. Long text generation via adversarial
training with leaked information. In AAAI.

R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimen-
sionality reduction by learning an invariant mapping.
2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’06),
2:1735–1742.

Alexia Jolicoeur-Martineau. 2018. The relativistic dis-
criminator: a key element missing from standard
gan. In ICLR.

Matt J. Kusner and José Miguel Hernández-Lobato.
2016. Gans for sequences of discrete elements
with the gumbel-softmax distribution. ArXiv,
abs/1611.04051.

Fig. 3: Comparison between generated sentences from language GANs with and without counter-contrastive learning.

Better Diversity For fair comparison, we select the generated sentences that contain the
word “cat” from samples produced by models with and without the CCL method. It is
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Conclusion

In this paper, we introduce a counter-contrastive learning objective to advance the train-
ing of language GANs. It pulls the representation of generated and real samples together
to promote the generator training, and pushes apart real sample pairs to depress the dis-
criminator training as a competitor. Our work aims to integrate the prevalent contrastive
learning approach in supporting the generator training, which lies in the line of methods
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